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1
REGIONLETS WITH SHIFT INVARIANT
NEURAL PATTERNS FOR OBJECT
DETECTION

This application claims priority to Provisional Applica-
tions 61/897,421 filed Oct. 30, 2013 and 62/030,675 filed Jul.
30, 2014, the contents of which are incorporated by reference.

BACKGROUND

Detecting generic objects in high-resolution images is one
of the most valuable pattern recognition tasks, useful for
large-scale image labeling, scene understanding, action rec-
ognition, self-driving vehicles and robotics. At the same time,
accurate detection is a highly challenging task due to clut-
tered backgrounds, occlusions, and perspective changes. Pre-
dominant approaches use deformable template matching with
hand-designed features. However, these methods are not flex-
ible when dealing with variable aspect ratios. Regionlets have
been used for generic object detection and extends classic
cascaded boosting classifiers with a two-layer feature extrac-
tion hierarchy which is dedicatedly designed for region based
object detection. The innovative framework is capable of
dealing with variable aspect ratios, flexible feature sets, and
improves upon Deformable Part-based Model in terms of
mean average precision. Despite the success of these sophis-
ticated detection methods, the features employed in these
frameworks are still traditional features based on low-level
cues such as histogram of oriented gradients (HOG), local
binary patterns (LBP) or covariance built on image gradients.

As with the success in large scale image classification,
object detection using a deep convolutional neural network
also shows promising performance. The dramatic improve-
ments from the application of deep neural networks are
believed to be attributable to their capability to learn hierar-
chically more complex features from large data-sets. Despite
their excellent performance, the application of deep CNN5s
has been centered around image classification, which is com-
putationally expensive when transferring to object detection.
For example, the approach in [8] needs around 2 minutes to
evaluate one image. Furthermore, their formulation of the
problem does not take advantage of venerable and successful
object detection frameworks such as DPM or Regionlets
which are powerful designs for modeling object deformation,
sub-categories and multiple aspect ratios.

The regionlets framework in object detection provides
accurate generic object detection. Despite its great success,
the features fed to this framework are still very low level
features populated in previous literatures. On the other hand,
the deep convolutional neural network (deep CNN) are well
known as a powerful feature learning machine. Conventional
methods apply a whole neural network for all possible object
locations, leading to unaffordable computational cost. Typi-
cally, finding an object in an image costs several minutes or
even hours.

SUMMARY

Systems and methods are disclosed for detecting an object
in an image by determining convolutional neural network
responses on the image; mapping the responses back to their
spatial locations in the image; and constructing features
densely extract shift invariant activations of a convolutional
neural network to produce dense features for the image.

In implementations, the feature extraction computation for
object candidates are shared and produces much better detec-
tion efficiency. We further augment these features with tradi-
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tional hard-coded features. The features are complementary
to each other and produce much better detection accuracy.

Advantages of the system may include one or more of the
following. The system provides fast object detection using
powerful neural network features and Regionlets object
detection framework. Our system extracts shift invariant neu-
ral patterns from deep CNN and achieves excellent perfor-
mance in object detection. The system is a new example of
transfer learning, i.e transferring the knowledge learned from
large-scale image classification (in this case, ImageNet image
classification) to generic object detection. The system trans-
fers the knowledge learned from a classification task to object
detection by trickling high-level information in top convolu-
tional layers in a deep CNN down to low-level image patches.
As aresult, a typical PASCAL VOC image only needs to run
the neural network several times to produce DNPs for the
whole image depending on the required feature stride, prom-
ising low computational cost for feature extraction. To adapt
our features for the Regionlets framework, we build normal-
ized histograms of DNPs inside each sub-region of arbitrary
resolution within the detection window and add these histo-
grams to the feature pool for the boosting learning process.
DNPs can also be easily combined with traditional features in
the Regionlets framework.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A shows an exemplary system with Regionlets with
Shift Invariant Neural Patterns for Object Detection.

FIG. 1B shows in more details a feature extraction module
of FIG. 1A.

FIG. 1C shows an exemplary computer Regionlets with
Shift Invariant Neural Patterns for Object Detection.

FIG. 2 shows an exemplary deep convolutional neural net-
work for extracting dense neural patterns.

FIG. 3 shows exemplary neural patterns associate with
location association.

FIG. 4 shows exemplary dense feature maps obtained by
shifting the classification window and extract neural patterns
at center positions.

FIG. 5 shows exemplary long-range features for detection
from higher layers of convolutional networks.

FIG. 6 shows Regionlets object detection framework. It
learns cascaded boosting classifiers to detect objects of inter-
est.

FIG. 7 shows an illustration of feature points, a detection
window, regions, and regionlets.

FIG. 8 shows an exemplary computer for object detection.

DESCRIPTION

FIG. 1A shows an exemplary system with Regionlets with
Shift Invariant Neural Patterns for Object Detection, while
FIG. 1B shows in more details a feature extraction module of
FIG. 1A. As shown in FIGS. 1A and 1B, our object detection
system first uses low-level segmentation to generate object
hypothesis. Then we apply a trained object detector to each of
the candidate. In contrast to extracting features for each can-
didate independently, we firstly densely generate features for
the image. The base feature extraction computation is shared
across different object candidates. The first row in the chart
shows general object detection framework with several com-
ponents such as object proposal generating and feature
extraction. The second row in the chart shows our object
detection framework. It incorporates CNN features into the
traditional object detection framework.
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The system efficiently incorporates a deep neural network
into conventional object detection frameworks using the
Dense Neural Pattern (DNP), a local feature densely
extracted from an image with arbitrary resolution using a
well-trained deep convolutional neural network. The DNPs
not only encode high-level features learned from a large
image data-set, but are also local and flexible like other dense
local features (like HOG or LBP). It is easy to integrate DNPs
into the conventional detection frameworks. More specifi-
cally, the receptive field location of a neuron in a deep CNN
can be back-tracked to exact coordinates in the image. Spatial
information of neural activations is preserved. Activations
from the same receptive field but different feature maps can
be concatenated to form a feature vector for the receptive
field. These feature vectors can be extracted from any convo-
Iutional layers before the fully connected layers. Because
spatial locations of receptive fields are mixed in fully con-
nected layers, neuron activations from fully connected layers
do not encode spatial information. The convolutional layers
naturally produce multiple feature vectors that are evenly
distributed in the evaluated image crop (a crop, for example).
To obtain dense features for the whole image which may be
significantly larger than the network input, we use ‘network-
convolution” which shifts the crop location and forward-
propagate the neural network until features at all desired
locations in the image are extracted.

In contrast to unsupervised pre-training, our system takes
advantage of a large-scale supervised image classification
model to improve object detection frameworks. The deep
CNN is trained using image labels on an image classification
task. Learning deep CNN in an unsupervised manner for our
framework may also be done. The system is a new example of
transfer learning, i.e transferring the knowledge learned from
large-scale image classification (in this case, ImageNetimage
classification) to generic object detection. The system trans-
fers the knowledge learned from a classification task to object
detection by trickling high-level information in top convolu-
tional layers in a deep CNN down to low-level image patches.

As a result, a typical PASCAL VOC image only needs to
run the neural network several times to produce DNPs for the
whole image depending on the required feature stride, prom-
ising low computational cost for feature extraction. To adapt
our features for the Regionlets framework, we build normal-
ized histograms of DNPs inside each sub-region of arbitrary
resolution within the detection window and add these histo-
grams to the feature pool for the boosting learning process.
DNPs can also be easily combined with traditional features in
the Regionlets framework.

Our experiments show that the proposed DNPs are very
effective and also complementary to traditional features. On
PASCAL 2007 VOC detection benchmark, our framework
with Regionlets and DNPs achieved 46.1% mAP compared to
41.7% with the original Regionlets; on PASCAL VOC 2010,
it achieves 44.1% mAP compared to 39.7% with the original
Regionlets. It outperforms the recent approach by [8] with
43.5% mAP. Furthermore, our DNP features are extracted
from the fifth convolutional layer of the deep CNN without
fine-tuning on the target data-set, while [8] used the seventh
fully connected layer with fine-tuning. Importantly, for each
PASCAL image, our feature extraction finishes in 2 seconds,
compared to approximately 2 minutes from our replication of
[8].

Our method incorporates a discriminatively-trained deep
neural network into a generic object detection framework.
This approach is very effective and efficient when applied to
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4

the Regionlets object detection framework and achieved
competitive and state-of-the-art performance on the PASCAL
VOC datasets.

As indicated in 100, the method includes a shift invariant
way to extract CNN features with spatial location informa-
tion. The second contribution (200) is the Regionlets detec-
tion framework with CNN and traditional features. The fea-
ture extraction has following steps:

1) Apply neural network forward propagation over the
image multiple times with a stride of 80 by 80 pixels.

2) Map the responses from the fifth convolutional layer
back to their original spatial location (101)

3) Do the max-pooling for responses falling into the same
regionlet (102)

4) These neural network features are put together in a pool
with traditional features for further boosting feature learning
(103).

We extract CNN features with spatial information which is
critical for object detection (100). It has never been achieved
before our invention. The system integration with traditional
features into a unified framework (200) improves the detec-
tion performance significantly. It is also new to the commu-
nity.

FIG. 1C shows another embodiment with a convolution
neural network. As indicated in 201, our system uses a shift
invariant way to extract CNN features for the regionlet frame-
work. We apply the deep convolutional neural networks (deep
CNN) model to a target image densely, Instead of using all the
CNN features extracted, we only extract features in the center
of the model. Because features lie on the boundary of the
model are convolved with paddings, while features in the
center of the model are convolved with effective pixel
regions. The different convolution behavior caused inconsis-
tency in feature extraction. Our approach extracts features in
a consistent way. If we shift one image patch from one posi-
tion to another, our approach will produce the same features.

Next, we first introduce the neural network used to extract
dense neural patterns, Then we provide detailed description
of'our dense feature extraction approach. Finally, we illustrate
the techniques to integrate DNP with the Regionlets object
detection framework.

Deep neural networks offer a class of hierarchical models
to learn features directly from image pixels. Among these
models, deep convolutional neural networks (CNN) are con-
structed assuming locality of spatial dependencies and sta-
tionarity of statistics in natural images. The architecture of
CNNs gives rise to several unique properties desirable for
object detection. Firstly, each neuron in a deep CNN corre-
sponds to a receptive field whose projected location in the
image can be uniquely identified. Thus, the deeper convolu-
tional layers implicitly capture spatial information, which is
essential for modeling object part configurations. Secondly,
the feature extraction in a deep CNN is performed in a homo-
geneous way for receptive fields at different locations due to
convolutional weight-tying. More specifically, different
receptive fields with the same visual appearance produce the
same activations. This is similar to a HOG feature extractor,
which produces the same histograms for image patches with
the same appearance. Other architectures such as local recep-
tive field networks with untied weights or fully-connected
networks do not have these properties. Not only are these
properties valid for a one-layer CNN, they are also valid for a
deep CNN with many stacked layers and all dimensions of its
feature maps. By virtue of these desirable properties, we
employ the deep CNN architecture. We build a CNN with five
convolutional layers inter-weaved with max-pooling and con-
trast normalization layers as illustrated in FIG. 2.
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FIG. 2 shows an exemplary architecture of the deep con-
volutional neural network for extracting dense neural pat-
terns. We did not separate the network into two columns, and
our network has a slightly larger number of parameters. The
deep CNN is trained on large-scale image classification with
data from ILSVRC 2010. To train the neural network, we
adopt stochastic gradient descent with momentum as the opti-
mization technique, combined with early stopping. To regu-
larize the model, we found it useful to apply data augmenta-
tion and the dropout technique. Although the neural network
we trained has fully connected layers, we extract DNPs only
from convolutional layers since they preserve spatial infor-
mation from the input image.

After the deep CNN training on large-scale image classi-
fication, the recognition module is employed to produce
dense feature maps on high-resolution detection images. We
call the combination of this technique and the resulting fea-
ture set Dense Neural Patterns (DNPs).

The main idea for extracting dense neural pattern is illus-
trated in FIG. 3 and FIG. 4. In the following paragraphs, we
first describe the methodologies to extract features using a
deep CNN on a single image patch. Then, we describe the
geometries involved in applying “network-convolution” to
generate dense neural patterns for the entire high-resolution
image.

Each sub-slice of a deep CNN for visual recognition is
commonly composed of a convolutional weight layer, a pos-
sible pooling layer, and a possible contrast-normalization
layer. All three layers could be implemented by convolutional
operations. Therefore, seen from the perspective of preserv-
ing the spatial feature locations, the combination of these
layers could be perceived as one convolutional layer with one
abstracted kernel. The spatial location of the output can be
traced back by the center point of the convolution kernel.

FIG. 3 shows exemplar neural patterns extraction with
location association:

(a) A square region (224x224) as the input for the deep
neural network.

(b) Feature maps generated by filters in the fifth convolu-
tion layer, spatially organized according to their inherited 2-D
locations. Each map has 13x13 neural patterns.

(c) Feature vector generated for each feature point. A big-
ger circle indicates a larger neural activation.

As shown in FIG. 3(b), each convolution kernel produces a
sheet of neural patterns. To tailor dense neural patterns into a
flexible feature set for object detectors, we compute the 2-D
location of each neural pattern and map it back to coordinates
on the original image. As an example, we show how to com-
pute the location of the top-left neural pattern in FIG. 3(5).
Thehorizontal location x of this top-left neural pattern feature
is computed with Equation 1:

Wi-1 M
X=X+ ( - Pi)si—l
where i>1,
— wi-1
X = 5

X;_; 1s the top-left location of the previous layer, W, is the
window size of a convolutional or pooling layer, P, is the
padding of the current layer, S, ; is the actual pixel stride of
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two adjacent neural patterns output by the previous layer
which can be computed with Equation 2

S =S85 1%8; ()]

Here s, is the current stride using neural patterns output by
previous layers as “pixels”. Given equation 1 and equation 2,
the pixel locations of neural patterns in different layers can be
computed recursively going up the hierarchy. Table 1 shows a
range of geometric parameters, including original pixel x
coordinates of the top-left neural pattern and the pixel stride
at each layer. Since convolutions are homogeneous in x and y
directions, the y coordinates can be computed in a similar
manner. Coordinates of the remaining neural patterns can be
easily computed by adding a multiple of the stride to the
coordinates of the top-left feature point. To obtain a feature
vector for a specific spatial location (X,y), we concatenate
neural patterns located at (x,y) from all maps (neurons) as
illustrated in FIG. 3(¢).

Table 1 shows exemplary computations of the actual loca-
tion X; of the top-left neural pattern and the actual pixel dis-
tance S, between two adjacent neural patterns output by layer
i, based on our deep CNN structure.

i Layer W; s; P; S; X;
1 convl 11 4 1 4 6
2 pooll 3 2 0 8 10
3 conv2 5 1 2 8 10
4 pool2 3 2 0 16 18
5 conv3 3 1 1 16 18
6 conv4 3 1 1 16 18
7 convs 3 1 1 16 18
8 pool3 3 2 0 32 34

Now that a feature vector can be computed and localized,
dense neural patterns can be obtained by “network-convolu-
tion”. This process is shown in FIG. 4 where dense feature
maps obtained by shifting the classification window and
extract neural patterns at center positions. Producing dense
neural patterns to a high-resolution image could be trivial by
shifting the deep CNN model with 224x224 input over the
larger image. However, deeper convolutional networks are
usually geometrically constrained. For instance, they require
extra padding to ensure the map sizes and borders work with
strides and pooling of the next layer. Therefore, the activation
of a neuron on the fifth convolutional layer may have been
calculated on zero padded values. This creates the inhomo-
geneous problem among neural patterns, implying that the
same image patch may produce different activations.
Although this might cause tolerable inaccuracies for image
classification, the problem could be detrimental to object
detectors, which is evaluated by localization accuracy. To
rectify this concern, we only retain central 5x5 feature points
of' the feature map square. In this manner, each model convo-
Iution generates 25 feature vectors with a 16x16 pixel stride.
In order to produce the dense neural patterns map for the
whole image using the fifth convolutional layer, we convolve
the deep CNN model every 80 pixels in bothx and y direction.
Given a 640x480 image, it outputs 40x30 feature points
which involves 8x6 model convolutions.

The DNP feature representation has some desirable char-
acteristics which make it substantially different from and
complementary to traditional features used in object detec-
tion.

Robustness to Boundary Effects Caused by Local Shifts is
Discussed Next.

Most hand-crafted features are not robust to local shifts due
to the hard voting process. Given HOG for example, gradient
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orientations are hard voted to spatial (8x8) histograms. Fea-
tures close to the boundary of two feature regions may be in
one region on one example, but the other on another example
which causes substantial feature representation change. The
boundary effects may cause difficulties in robust detection.
Moreover, if we shift the window by 8 pixels, extracted fea-
tures are completely misaligned. On the contrary, the max-
pooling in DNPs explicitly handles reasonable pixel shifts.
The dense convolution with shared weights, the data driven
learned invariance also implicitly further improve the robust-
ness to boundary effects and local shifts.

FIG. 5 shows long-range features for detection from higher
layers of convolutional networks: the blue circle shows the
feature point at which we want to extract features. The yellow
patch shows the area where HOG features are built (usually
8x8). The green patch is the receptive field from which the
deep net features are extracted (163x163 for the fifth convo-
Iutional layer).

Local Features with High-Level Information are Gener-
ated by the System.

Another significant advantage of DNPs is that the hierar-
chical architecture of CNNs offers high-level visual features.
More specifically, the features are indicative of object-level or
object-part level visual input. To validate this, we find the
image patches that causes large responses to a selected neural
pattern dimension in the deep layers of the CNN. This visu-
alization is shown in FIG. 7. It suggests that patches which
have large feature responses to the same neural pattern
dimension correspond to similar object category, color or
contour. In this respect, DNPs offers significant advantages
over traditional features for object detection. Details about
the visualization can be found in Sec. 4.2.

Long-Range Context Modeling

From lower to higher layers, DNP features cover increas-
ingly larger receptive fields. On the fifth layer, each neuron is
responsive to a spatial area of 163x163 pixels in the input
image. The features in this layer reacts to appearances of
much larger scale as compared to hand-designed local fea-
tures like HOG for object detection as shown in FIG. 5. The
long-range effect of the significantly larger context area is
beneficial. It is analogous to long-range effects which were
shown to improve localization [3] and image segmentation
[18].

Next, Regionlets with Local Histograms of Dense Neural
Patterns are Detailed.

The Regionlets object detection framework learns cas-
caded boosting classifiers to detect objects of interest. The
object searching space is defined using segmentation cues.
The approach employs candidate bounding boxes from
Selective Search. Given an image, candidate boxes, i.e, object
hypothesis are proposed using low-level segmentation cues.
The Regionlets approach employs boosting classifier cas-
cades as the window classifier. The input to each weak clas-
sifier is a one-dimensional feature from an arbitrary region R.
The flexibility of this framework emerges from max-pooling
features from several sub-regions inside the region R. These
sub-regions are named Regionlets. In the learning process,
the most discriminative features are selected by boosting
from a large feature pool. It naturally learns deformation
handling, one of the challenges in generic object detection.
The Regionlets approach offers the powerful flexibility to
handle different aspect ratios of objects. The algorithm is able
to evaluate any rectangular bounding box. This is because it
removes constraints that come with fixed grid-based feature
extraction.

The dense neural patterns introduced above encode high-
level features from a deep CNN at specific coordinates on the

10

15

20

25

30

35

40

45

50

55

60

65

8

detection image. This makes them a perfect set of features for
the Regionlets framework. The basic feature construction unit
in the Regionlets detection model, i.e a regionlet, varies in
scales and aspect ratios. At the same time, the deep neural
patterns from an image are extracted using a fixed stride
which leads to evenly distributed feature points in both hori-
zontal and vertical directions. As illustrated in FIG. 6, a
regionlet can cover multiple feature points or no feature point.
The illustration of FIG. 6 shows feature points, a detection
window, regions, and regionlets. Blue points represent dense
neural patterns extracted in each spatial location. FIG. 6
shows that a regionlet can spread across multiple feature
points, or no feature point.

To obtain a fixed length visual representation for a region-
let of arbitrary resolution, we build a local DNP histogram, or
average pooling of DNPs, inside each regionlet. Denote
DNPs in a regionlet r as {x,lie(1, . . . N,)}, where i indicates
the index of the feature point, N, is the total number of feature
points in regionlet r. The final feature for r is computed as:

®

Each dimension of the deep neural patterns corresponds to
a histogram bin and their values from different spatial loca-
tions are accumulated inside a regionlet. The histograms are
normalized using [.-0 norm. While most histogram features
define a fixed spatial resolution for feature extraction, our
definition allows for a histogram over a region of arbitrary
shape and size. Max-pooling is performed among regionlets
to handle local deformations.

To incorporate DNP into the Regionlets detector learning
framework, in which the weak learner is based on a 1-D
feature, we uniformly sample the DNPxRegionlets configu-
ration space to construct the weak classifier pool. Each con-
figuration specifies the spatial configuration of Regionlets as
well as the feature dimension of DNP. Because the represen-
tation is 1-D, the generated feature pool can be easily aug-
mented to the pool of other features such as HOG, LBP or
Covariance.

Constructing DNP feature representations for other tem-
plate-based detectors (similar as HOG template) is fairly
simple. Naturally we just need to concatenate all DNPs in the
detection window. The features can also be directly applied to
the Deformable Part-based Model by replacing the HOG
features with the 256 dimensional neural patterns.

The foregoing system provides a framework to incorporate
a discriminatively trained deep convolutional neural network
into generic object detection. It is a fast effective way to
enhance existing conventional detection approaches with the
power of a deep CNN. Instantiated with Regionlets detection
framework, we demonstrated the effectiveness of the pro-
posed approach on public benchmarks. We achieved compa-
rable performance to state-of-the-art with 74 times faster
speed on PASCAL VOC datasets. We also show that the
DNPs are complementary to traditional features used in
object detection. Their combination significantly boosts the
performance of each individual feature.

FIG. 8 shows an exemplary computer for Object Detection.
The system may be implemented in hardware, firmware or
software, or a combination of the three. Preferably the system
is implemented in a computer program executed on a pro-
grammable computer having a processor, a data storage sys-
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tem, volatile and non-volatile memory and/or storage ele-
ments, at least one input device and at least one output device.

Each computer program is tangibly stored in a machine-
readable storage media or device (e.g., program memory or
magnetic disk) readable by a general or special purpose pro-
grammable computer, for configuring and controlling opera-
tion of a computer when the storage media or device is read by
the computer to perform the procedures described herein. The
inventive system may also be considered to be embodied in a
computer-readable storage medium, configured with a com-
puter program, where the storage medium so configured
causes a computer to operate in a specific and predefined
manner to perform the functions described herein.

The invention has been described herein in considerable
detail in order to comply with the patent Statutes and to
provide those skilled in the art with the information needed to
apply the novel principles and to construct and use such
specialized components as are required. However, it is to be
understood that the invention can be carried out by specifi-
cally different equipment and devices, and that various modi-
fications, both as to the equipment details and operating pro-
cedures, can be accomplished without departing from the
scope of the invention itself.

What is claimed is:
1. A method for detecting an object in an image, compris-
ing:

determining convolutional neural network responses on
the image;

mapping the responses back to their spatial locations in the
image;

constructing features densely extract shift invariant activa-
tions of a convolutional neural network to produce dense
features for the image; and

determining a horizontal location x of a neural pattern
feature as:

Wi-1

X=X+ ( - Pi)si—l

where i>1,

X, ; 1s a top-left location of a previous layer, W, is the window
size of a convolutional or pooling layer, P, is a padding of a
current layer, S, | is actual pixel stride of two adjacent neural
patterns output by the previous layer.

2. The method of claim 1, comprising sharing feature
extraction computation for object candidates.

3. The method of claim 1, comprising augmenting the
features with hard-coded features.

4. The method of claim 1, comprising densely extract shift
invariant activations of a convolutional neural network
trained on an image database.

5. The method of claim 1, comprising feeding the features
to a Regionlets framework.

6. The method of claim 5, comprising using a boosting
procedure to choose effective features.

7. The method of claim 1, comprising determining:

S =S11%8;,

where s, is a current stride using neural patterns output by the
previous layers as pixel; and
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determining pixel locations of neural patterns in different

layers recursively by going up the hierarchy.

8. The method of claim 1, comprising determining a fixed
length visual representation for a regionlet of arbitrary reso-
lution.

9. The method of claim 8, comprising generating a local
Dense Neural Patterns (DNPs) histogram, or average pooling
of DNPs, inside each regionlet.

10. The method of claim 9, comprising generating DNPs in
aregionlet r as {x,1i8(1, . . . N,)}, where i indicates the index
of'the feature point, N, is the total number of feature points in
regionlet r and determining a final feature for r as:

11. The method of claim 9, wherein each dimension of
deep neural patterns corresponds to a histogram bin and their
values from different spatial locations are accumulated inside
a regionlet, comprising normalizing histograms using -0
norm.

12. The method of claim 9, comprising incorporating DNP
into a Regionlets detector learning framework.

13. The method of claim 9, comprising applying a weak
learner based on a 1-D feature, and uniformly sample DNP
Regionlets configuration space to construct a weak classifier
pool.

14. The method of claim 13, wherein the generated feature
pool is easily augmented to the pool of other features includ-
ing HOG, LBP or Covariance.

15. The method of claim 9, wherein each configuration
specifies a spatial configuration of Regionlets and feature
dimension of the DNP.

16. A system for detecting an object in an image, compris-
ing:

a processor for carrying out the following means:

means for determining convolutional neural network

responses on the image;

means for mapping the responses back to their spatial

locations in the image;
means for constructing features densely extract shift
invariant activations of a convolutional neural network
to produce dense features for the image; and

determining a horizontal location x of a neural pattern
feature as:

Wi-1

X = Xioq +( - Pi)si—l

where i>1,

W -1

X1

X, , 1s a top-left location of a previous layer, W, is the window
size of a convolutional or pooling layer, P, is a padding of a
current layer, S, | is actual pixel stride of two adjacent neural
patterns output by the previous lave.

17. The system of claim 16, comprising means for sharing
feature extraction computation for object candidates.

18. The system of claim 16, comprising means for aug-
menting the features with hard-coded features.
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19. The system of claim 16, comprising means for densely
extract shift invariant activations of a convolutional neural
network trained on an image database.

#* #* #* #* #*
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